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Many materials of practical interest are either semiconducting or insulating in nature. 
One of the most important quantities characterising these materials, therefore, is the 
energy bandgap. In the present article, procedures available for estimating the bandgaps 
of binary, inorganic materials from thermochemical and related data have been briefly 
reviewed with special emphasis on recent work. 

It has been shown that heats of formation per equivalent and heats of atomisation per 
equivalent may be used for approximate prediction of bandgaps of these materials. 
Theoretical origins of the correlation of bandgaps to heats of formation, heats of 
atomisation, lattice energies, single bond energies and average bond energies etc., have 
been indicated. 

1. Introduction 
A thermodynamic approach to the study of 
several solid state phenomena is now a well- 
established procedure and is frequently used by 
metallurgists, materials scientists, and chemists 
[1-2]. An important problem in solid state 
science is the prediction of energy bandgaps [3] 
of materials. The width of the forbidden gap of a 
semiconductor or an insulator is, of course, a 
very fundamental quantity and constitutes the 
basis for calculating the band structure and 
related problem of determining the number of 
intrinsic carriers as well as their temperature- 
dependence. The object of the present article isto 
present procedures available for rough computa- 
tien of bandgaps of binary inorganic compounds 
from their thermodynamic data [4-7]. These 
approaches [4-7], even though approximate and 
only semi-quantitative, are nevertheless very 
useful since no precise procedures are available 
for computing the band structure of a variety of 
practical materials, e.g. refractory oxides, ceram- 
ics, polyatomic substances, etc. This is because 
methods of theoretical physics are either 
inadequate or too cumbersome for computing 
the bandgaps of all but the simplest compounds, 
e.g. Ge. Furthermore, from the sheer pedagogic 
point of view, the approaches to be described 
here [5, 6] are extremely instructive for present- 
�9 1970 Chapman and Hall Ltd. 

ing, in a chemist's language, the theoretical 
origins of correlations between bandgaps and 
various other quantities, e.g. heats of formation, 
bond energies and lattice energies, etc. 

In the present article, it will be assumed that the 
reader is familiar with the qualitative aspects of 
band theory of solids as presented, e.g. in a 
recent lucid article [3]. Other excellent exposi- 
tions of band theory of solids at a relatively 
elementary level are also available in the litera- 
ture [8-11]. Some familiarity with elementary 
thermochemistry and the nature of cohesion in 
ionic solids [8-10] will also be assumed. 

2. Prediction of Bandgap from Thermo- 
dynamic Data 

According to the proposal of Ruppel, Rose and 
Gerritsen [4], the bandgap energy of several 
inorganic compounds may be taken as lying 
between one and two times their heat of forma- 
tion per mole in the standard state (fig. 1). This 
observation was based on qualitative, intuitive 
arguments and was used to explain the relation- 
ship between energy levels in solids and electro- 
lytes. It was shown by Vijh [5] that this correla- 
tion (fig. 1), when applied to polyatomic com- 
pounds formed between polyvalent ions gives 
completely erroneous results. It was argued [5], 
after ideas of Sanderson [12], that in correlations 
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Figure I Relationship between bandgaps, Eo, and heats of 
formation (standard state)per mole for several compounds 
as proposed by Ruppel, Rose and Gerritsen [4]. 

of the type shown in fig. 1, one must "normalise" 
the thermodynamic data, i.e. the heats of forma- 
tion must be taken as per equivalent, i.e. neither 
as per mole, nor as per atom but as per atomic 
equivalent. It was observed that this normalisa- 
tion factor when applied to the proposal of 
Ruppel et al results in a correlation valid for a 
very large variety of inorganic compounds (fig. 2). 
Specifically, this improved correlation (fig. 2) 
results in valid predictions for bandgaps of poly- 
atomic compounds formed between polyvalent 
ions (table I). Hence, it was concluded that, 

T A B L E  I 

Compound Eg Eg Eg 
(Ruppel et al) (Vijh) (experimental) 
eV eV eV 

A1203 17 - -  34 5.67 7 
Ta205 21.75 --  43.5 4.35 4.6 
TiO~ 9.46 --  19.92 4.73 3.0 

Ga20~ 11.19 --  22.38 3.73 4.4 
IntO3 9.63 -- 19.26 3.21 2.8 
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empirically, bandgap, Eg, is approximately two 
times the heat of formation per equivalent, AHe; 
i.e., 

Eg ~_ 2AHe.  (1) 

It may be mentioned that suggestions similar 
to those of Ruppel et al were also put forward by 
Semenkovich [7], and are subject to similar 
criticism, i.e. his [7] conclusions are also invalid 
for polyatomic compounds for the reasons 
mentioned in the foregoing discussion. It 
follows from equation 1 that for intrinsic semi- 
conductors, AHe is approximately equal to the 
Fermi energy, Er, as has been schematically 
shown in fig. 3 [1, 8-10]. 

On the basis of some early work on the rela- 
tionship of bandgaps to Crystal binding, Manca 
[13] showed that for certain restricted classes of 
semiconductors, the following relationship is 
obeyed: 

Eg = a(Es - b) (2) 

where a and b are constants characteristic of a 
given series of compounds, with the value of a 
usually close to 2; Es is a single bond energy 
calculated by Pauling's [14] well-known empirical 
equation: 

D(A-B) = �89 {D(A-A) + D(B-B)} 
q- 23(XA-XB) ~ (3) 

where D(A-B) is the required single bond 
energy in molecule AB; D(A-A) is the A-A 
bond strength whereas D(B-B)is the B-B 
bond strength; XA and XB are the electro- 
negativities, on the Pauling scale [14], of atoms 
A and B respectively. The factor, 23(XA-XB) ~, 
takes into account the extra strength that results 
from partial ionicity of the covalent bond 
between A and B. It may be noted that bond 
strength has been used here as synonymous with 
single bond energy. 

The value obtained by Pauling's equation gives 
an estimate of the strength of an isolated bond. 
As was pointed out previously [6], such a 
quantity would not represent the general magni- 
tude of binding in a complex solid involving 
many bonds, e.g. Ta2Os; the binding in such a 
substance must be represented by an average 
bond energy which may be obtained by an 
appropriate thermochemical cycle as discussed 
recently by Howald [15]. This average bond 
energy for, e.g. NaC1, may be obtained by the 
equation: 
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Figure 2 Correlation between bandgaps, Eg, and heats 
number of inorganic substances [5]. 
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Figure 3 A schematic representation of approximate 
equivalence of AH e and EF, the Fermi energy, for intrinsic 
semiconductors. 

D(NaC1) = AHs -F 1AHaiss + AHf (4) 

where D(NaC1) is the energy of the Na-C1 bond; 
AHs is the heat of sublimation of sodium; AHaiss 
is the heat of dissociation of chlorine gas into 
chlorine atoms; AHf is the heat of formation, in 
the standard state, of NaC1. For a complex 

of formation (standard state) per equivalent for a large 

compound like Ta~Os, to obtain the bond energy 
from equation 4, one must take all quantities on 
the r.h.s, as per equivalent. Further appropriate 
corrections for co-ordinate valence, spin correla- 
tion stabilisation energies and /7  bonding etc. 
must be applied [15]. It may be noted that such 
corrections are unnecessary for alkali halides, 
and for other compounds are usually of small 
magnitude, as discussed by Howald [15]. In 
effect, an average bond energy is the heat of 
atomisation per equivalent, to which certain 
corrections have been applied. In the terminology 
of Rose [4], an average bond energy would be 
approximately equivalent to the heat of forma- 
tion per equivalent in the atomic state, i.e. not in 
the standard state. 

By assuming Es to denote an average bond 
energy, Vijh examined Manca's equation 2 for 
the case of several inorganic compounds and 
found it to be approximately valid (fig. 4). It may 
be noted that the correlation presented in fig. 4 is 
rather a general one and includes a wide variety 
of compounds. Specifically, it includes binary 
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Figure 4 A plot showing corre lat ion between bandgaps, EQ, and average bond energies for  several binary com- 
pounds.  

inorganic substances covering the following type 
of properties: 
(i) Both low and high bandgap semiconductors 
as well as insulators. 
(ii) Several polyatomic compounds formed be- 
tween polyvaIent ions. 
(iii) Substances which, on the basis of Pauling's 
criteria, cover a wide range of ionicity. It is 
realised that Pauling's criteria, strictly speaking, 
are not applicable to solids. However, Pauling's 
electronegativity criterion represents a conveni- 
ent way in terms of a chemist's language, of 
conveying the fact that fig. 4 includes compounds 
ranging from the highly covalent (Sb~S3) to the 
extremely ionic (CsF). 
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(iv) All the important crystal structures have 
been represented in fig. 4. The examples are zinc 
blende, wurzite, NaC1, CsC1, cuprite, fluorite and 
corundum. 

Hence it may be concluded that fig. 4 (and 
equation 2) represents a rather general, though 
an approximate, basis of predicting bandgaps of  
substances from thermodynamic data (i.e. 
equation 4). 

An attempt will now be made to point out the 
possible theoretical basis of figs. 2 and 4, at least 
for the case of ionic compounds, e.g. alkali 
halides. As will be shown below the theoretical 
origins of figs. 2 and 4 (or equations 1 and 2) for 
the case of highly covalent compounds is not all 
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that clear cut. 

3. Theoretical Considerations 
In this section, an analysis based on our previous 
work [6] will be presented; this analysis will 
attempt to clarify possible theoretical foundations 
of equations 1 and 2 for the case of alkali 
halides. 

It has been shown by Mark [16] that the band- 
gap energy, Eg, of, for example, NaC1 is given by: 

Eg = 2M - / i n  + Ax (5) 

where M is the Madelung energy, Im is the ionisa- 
ation potential of Na; Ax is the electron affinity 
of C1. Equation 5 may be rewritten as: 

Eg = 2(U - R) - lm -~ Ax (6) 

where U is the experimental (thermochemical) 
lattice energy and R is an energy term which 
includes repulsive, London, and other compon- 
ents of theoretical lattice energy [8] so that, 

M = (U - R) (7) 

is quite valid. 
By a suitable thermochemical cycle, one can 

show that [8]: 

AH~ = AHs 4- Ira + �89 + Ax -q- U. (8) 

In equation 8, the various symbols represent the 
following quantities: AH~ is the heat of formation 
of, for example, of NaC1; AHs is the heat of 
sublimation of Na; / in  is the ionisation potential 
of Na; AH9  is the energy of dissociation of Cl~(g) 
into atoms; Ax is the electron affinity of C1; U is 
the lattice energy of NaCI. The quantities defined 
above are all in per mole of the corresponding 
substance. 

On simple rearrangement, equation 6 yields: 

- U = AHs + I m  + �89 + Ax - LJH~. (9) 

It may be noted that, U, Ax and AHf are exo- 
thermic quantities (hence with - sign) and AHs, 
Im and AHo  are endothermic quantities (hence 
with + sign) for the case of alkali halides. On 
substituting for exothermicity and endothermi- 
city in equation 9 one obtains: 

U = AHs + I m  q- �89 + AHf - Ax .  (10) 

Substituting equation 10 in equation 6 

Eg ~- 2AHs + 2Ira + AHD + 2AHf - 2Ax 
- -  /in -~- Ax - 2 R  ( 1 1 )  

or, 

Eg = 2A Hs q- Im + AHD + 2AHf - Ax - 2R. 
(12) 

If  we make an approximation that Im is 
roughly equivalent to Ax in magnitude, we obtain: 

Eg = 2AHs § 2AHf + AHD - 2R (13) 
or,  

E g  = 2(AH  - R ) ,  (14)  

where ,dH~ is the heat of atomisation per mole, 
and for a diatomic molecule formed between uni- 
univalent ions (e.g. NaC1) is the same thing as 
heat of atomisation per equivalent, which, of 
course, is the average bond energy [6, 12, 14, 15.] 

For a complex compound involving several 
ions, either univalent or polyvalent, equation 14 
has to be appropriately modified. This is because 
equations 5 and 6 refer to the transfer of one 
valence electron, e.g. from Na to C1; for main- 
taining the validity of equation 11, U in equation 
10 must also be taken as per valence electron, i.e. 
as per equivalent. As a result, the AH~ term in 
equation 14 must be changed from AH~/mole to 
AHa/eq. for polyatomic compounds. As men- 
tioned above, AH~/eq. is the bond energy E~. 
H e n c e ,  

= 2(E  - R). (15) 
For a given series of compounds, e.g. alkali 

halides, R may approximately be treated as a 
constant. Hence, equation 15 may be written in 
the form: 

Eg = 2(Ea - b) (16) 

where b is a constant. This equation 16 is 
identical with equation 2 in this article. 

The approximation involved in the derivation 
of equation 13 may now be examined. If/m is not 
roughly equivalent to Ax, then R in equation 13 
may be converted to R' where, 

R' = R + �89 - �89 (17) 

For a series of related substances, R' may again 
be assumed as, roughly, a constant. For example, 
for several alkali halides, R' values are close to 
2.5 • 0.5 eV. It may be mentioned that equation 
17 will have to be suitably modified for com- 
pounds involving positive electron affinities. 

I f  we rewrite equation 13 by substituting 
equation 17 in it, we obtain: 

Eg = (2AHs q-AHI) - 2R') + 2AHf .  (19) 

For several substances, it is observed that, 
fortuitously, the quantities in the parentheses 
roughly cancel each other out. For instance, for 
NaC1, the net value of the quantities in the 
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parentheses in equation 19 would be ca. 0.6 eV. 
I f  the magnitude of the quantities in parentheses 
is small it follows that: 

Eg '~ 2AHf  . (20) 

Like all quantities in such comparisons, AHf  
must be "normalised", i.e. taken as per equiv- 
alent [12, 14, 15]. Hence, 

Eg "." 2AHf/eq. (21) 

Equation 21 is identical with equation 1 of this 
article. 

From the foregoing it is clear that equations 1 
and 2, which have been shown to be obeyed in 
figs. 2 and 4 respectively, also have some 
approximate theoretical validity, at least for the 
case of ionic compounds. 

For the case of some covalent compounds 
included in fig. 4, it is possible that some 
compensatory effects are involved. For example, 
increase in cohesive energy due to homopolar 
binding may roughly cancel out the decrease in 
lattice energy that would be expected to result 
from partial ionicity of the compound. In these 
cases, the analysis presented here, which strictly 
applies to ionic compounds, would be essentially 
valid. For other covalent compounds, in principle, 
one could modify this analysis by writing 
equation 2 (or equation 16) in the form: 

Eg ----- 2(Es - b) • A U.  (22) 

Here A Uis the difference between theoretical and 
thermochemical lattice energy, again taken as 
per equivalent [8]. It may be added, however, 
that for the compounds in fig. 4, no correction 
has been applied for covalence. It is fortuitous 
that several covalent compounds obey equation 
2. 

Finally, it is obvious that the present theor- 
etical analysis has no validity either for elemental 
semiconductors or for molecular semiconductors, 
e.g. anthracene. 

4. Conclusions 
It has been shown that it is possible to predict, 

even though somewhat approximately, bandgaps 
of a wide variety of inorganic compounds from 
appropriate thermodynamic data. This may be 
done through application of either of equations 1 
or2. An analysis has been presented which shows 
the rough theoretical validity of the suggested 
procedure, at least for the case of ionic com- 
pounds.These equations are semi-quantitative in 
nature, and, are of rather wide applicability, e.g. 
fig. 2. 
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